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Abstract. A major step in understanding pattern formation has been achieved by studying idealized sys-
tems. However, in nature inhomogeneous systems are much more abundant than their idealized homoge-
neous counterparts. Here we report about experimental results on pattern formation in two inhomogeneous
systems, thermal convection in porous media and Taylor-vortex flow between a rough and a smooth cylin-
der. Several aspects of heterogeneity effects in pattern formation are theoretically investigated for model
equations and analytical descriptions are given for a few phenomena.

PACS. 47.20.-k Hydrodynamic stability – 47.54.+r Pattern selection; pattern formation –
71.55.-i Impurity and defect levels

1 Introduction

During recent decades, pattern formation has experienced
enormous progress [1–5] and important insights were con-
tributed by studies of idealized fluid systems such as
Rayleigh-Bénard convection (RBC) [6], Taylor-Couette
flow (TCF) [7] and electroconvection [8,9]. In many cases
these experiments were carefully prepared and essentially
homogeneous. Close to the onset of flow, there is now a
general classification scheme of bifurcations and simple
normal forms, so–called Ginzburg–Landau equations, pro-
vide a good qualitative description of some region near
the onset of flow [4]. In fluid systems, quantitative under-
standing exists for many phenomena in pattern formation
[4]. They are characterized by control parameters, which
apply everywhere within the system. With increasing con-
trol parameter, ε, additional instabilities occur and lead
to more and more complex spatio-temporal dynamics in
these ideal systems. Typically, these complex flows are at
best only partly understood, and are among the current
challenges for dynamicists.

A much less studied issue is pattern formation in sys-
tems which are intrinsically inhomogeneous. In nature,
pattern forming systems are in most cases inhomogeneous
and their homogeneous isotropic counterparts are often
prepared in laboratory experiments. An intrinsically inho-
mogeneous system is convection in porous media [10]. In
fluid systems, as mentioned above, inhomogeneities may
also arise from irregularities at the container boundaries.
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Often these irregularities are small compared to the ex-
tension of the fluid containers and the length scale of
the pattern and the related effects are below the exper-
imental resolution. However, in recent experiments, the
size of the container has, in some cases, been considerably
reduced and/or the experimental resolution strongly en-
hanced. Both effects make it more likely that roughness
effects arise. These effects are unlikely to be explained
by models assuming ideal flat boundaries. Here we de-
scribe experiments where irregularities are introduced in
a controlled manner, either at the container boundaries or
in the bulk. Such investigations allow a more systematic
analysis of typical effects of irregularities. For instance,
they allow an estimate of the robustness of phenomena
which are usually studied under ideal conditions. But, the
reduced symmetry and greater spatial complexity of inho-
mogeneous systems make them more difficult to study.

Linear waves, such as acoustic or electromagnetic
waves in disordered media are already a subject exten-
sively studied in recent years [11]. Perhaps most famous
is Anderson localization, where disorder in a linear media
causes an exponential decay of the transmission coefficient
(see e.g. Refs. [11,12]). Nonlinearity may act counter to
linear disorder effects, thus enhancing the transmission co-
efficient. Hence, solitons and spatially periodic patterns in
model systems stay undistorted if nonlinearities are strong
[13,14] .

A subclass of inhomogeneous systems are spatially pe-
riodic patterns which are spatially periodic modulated.
These have been investigated already to some extent in
one and two spatial dimensions. The competition between
the wave length of the forcing and the naturally occurring
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wave length of the pattern leads to a great variety of phe-
nomena. In one spatial dimension it leads to commen-
surate/incommensurate transitions, phase solitons etc.
[15–18] and in two spatial dimensions to complex patterns
[19–21]. Single periodically forced systems and statisti-
cally heterogeneous systems share a number of common
phenomena. For instance, in both cases the up-down sym-
metry can be broken and the bifurcation might be im-
perfect. However, it is a major difference between both
that in heterogeneous systems the spectrum of forcing is
broad. As discussed here, the broad spectrum may lead to
localization effects and nonconstant weight for the wave
lengths in the spectrum may lead to rounding of the bi-
furcation which is not mainly due to the imperfect bifur-
cation. Other heterogeneous and extensively investigated
examples are coupled oscillators [22,23], where aspects
of synchronization are in the focus of investigations and
rough surfaces used for drag reduction (see e.g. [24]).

Here, we consider two spatially inhomogeneous sys-
tems experimentally. In Section 2 porous medium con-
vection (PMC) and in Section 3 Taylor-Couette flow
(TCF) where the inner cylinder is roughened by ma-
chining. In Section 4 effects of spatially varying coeffi-
cients are analyzed theoretically for one of the simplest
models describing spatially periodic patterns, the Swift-
Hohenberg model and effects of spatially varying bound-
aries in Rayleigh-Bénard convection.

2 Porous media convection (PMC)

We illustrate PMC in Figure 1, and discuss why PMC
naturally falls into a class of intrinsically inhomogeneous
nonlinear pattern forming systems. PMC is nominally sim-
ilar to RBC, except that the region containing the fluid
is shared with a solid medium. More specifically, the fluid
resides in the open connected channels of a porous solid. If
a thin horizontal layer of fluid-saturated porous medium
is heated from below, leading to a temperature difference,
∆T , convection will occur if the porous Rayleigh num-
ber [10]

Ra = αgγd/κν (1)

exceeds a critical value. In the conventional picture of
PMC as modeled by Darcy’s law, Rac = 4π2. Here, α,
κ, ν and d are the appropriate thermal expansion coeffi-
cient, thermal diffusivity, kinematic viscosity and heights
of the porous layer, and γ, defined below, is the perme-
ability. At onset, the expected pattern is straight rolls of
wavelength λ.

Although the conventional Darcian picture of PMC
may give an approximate picture, it also assumes that
the intrinsic structure of the medium is irrelevant. Re-
cent experiments have shown that this structure can have
a significant impact on pattern selection and heat trans-
port [25–27]. It is this structure which can make a porous
medium spatially inhomogeneous. In principle, one might
construct an experiment for which the pore scale, δ, is ar-
bitrarily small relative to the height of the porous layer,

H
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Fig. 1. Illustration of convection in a porous medium.

d. In this case the inhomogeneity resulting from the pores
should be negligible. However, for conventional fluids like
water, this is not really feasible. Here, we explore why that
is the case by examining the conventional Darcy picture
and its predictions. On some scale, a porous medium may
be thought of as a continuum which, for slow flow speeds
is characterized by Darcy’s law:

v = −γ/η · ∇P. (2)

Here, γ is the permeability and η is the shear viscosity.
More sophisticated continuum descriptions exist, but they
all share the assumption that there is a length scale,L, in-
termediate between the pore size, δ, and the overall system
size, S, such that an average of the flow over a represen-
tative elementary volume (REV), ∼ L3, is described to a
good degree of accuracy by Darcy’s law. In a typical lab-
scale system, the pore size cannot be made to satisfy the
condition that δ � λ ' 2d. This limitation arises because
of two competing constraints. First, the pore size cannot
be made very small, since otherwise, the temperature dif-
ference at and above onset is too large to have Boussinesq
flow. Second, the height of the system cannot be made
very large without incuring impractical relaxation times.
The issue is captured in Figure 2. This figure shows the
typical pore scale, δ vs. the layer height, d, with fluid
parameters pertaining to water. Boussinesq convection
can be obtained above the hyperbolic-like curve (assumes
∆Tc = 10 K). Tractable relaxation times (τ = d2/κ) for
vertical heat diffusion of less than 0.5 Hr apply below
the horizontal line. And of course to be a sensible porous
medium, we must have δ < d.

The bottom line of this analysis is that although δ can
be set less than d, the usual assumption, δ � d is hard to
met. Therefore, there will be microscopic structure, which
we can think of as local variation in R, with fluctuations
on scales not too much smaller than the convective wave-
length. Therefore, this system is a natural one for probing
the effects of spatial fluctuations on weakly nonlinear pat-
tern formation. Other systems have been studied which
have slow spatial variations. Examples are TCF [29] and
RBC with a spatial ramp [30] or RBC and EC with spa-
tially single periodic boundary variations [16,31,32]. PMC
is different in that inhomogeneities occur in the bulk and
that the spectrum of spatial variations is broad and has
significant strength at wave vectors larger (spatial scales
smaller) than the characteristic system scale, 2π/d. In our



W. Zimmermann et al.: Pattern formation in an inhomogeneous environment 759

δ

d

Fig. 2. Constraints for porous media convection (PMC), as
represented by the pore scale, δ and the layer height, d. The
hyperbolic-like curve applies for water, where ∆T = 10 K at
onset, assuming that this corresponds to Boussinesq convec-
tion. The region below this curve is non-Boussinesq. The hor-
izontal line corresponds to a vertical thermal relaxation time
of τv = 30 min — roughly a maximal acceptable time. In ad-
dition, to be even remotely a porous medium, δ must be no
larger than d, dashed line. A spatially homogeneous medium
should satisfy d/δ � 1 or alternatively Da = γ/d2 � 1. If we
choose Da = 2 × 10−5 then one must stay beyond the dotted
line. When all these constraints are imposed, only the small
triangular region remains as acceptable on all accounts. This
region does not satisfy δ � d.

examples, these variations may be either random or peri-
odic.

The PMC experiments which we describe here were
carried out using two rather different techniques, discussed
in more detail in references [25–27]. Each technique is an
experimental solution to the fact that in most cases, it is
impossible to optically visualize the flow in porous me-
dia. This difficulty arises for several reasons. First, many
porous media are not transparent. Second, even when the
medium consists of transparent solid particles, differences
in the indices of refraction of the fluid and solid plus the
random curved or rough interfaces between the fluid and
solid rapidly scatter the light. The first experiment de-
scribed here uses specially constructed porous media for
which there is a line of sight from above which is not af-
fected by the problems above. Two types (out of an infinite
collection of such materials) are sketched in Figure 3. One
is spatially random (by design) and consists of randomly
perforated, stacked, plastic sheets as shown in Figure 3a.
The other is actually spatially periodic and is constructed
by regular stackings of plastic bars, cf. Figure 3b [25,27].

The second experiment uses Magnetic Resonance
Imaging (MRI), a noninvasive technique which can di-
rectly measure both the local fluid density and velocity

[26]. Here, we present results for the vertical velocity. Each
technique has advantages and disadvantages. The first is
restricted to a subset of possible porous media, but can
also yield very high precision data for the heat transport –
Nusselt number Nu. The second can be used on virtually
every medium (providing it is not magnetic or electrically
conducting) but it is more difficult to obtain data for the
heat transport.

Data from the first type of experiment, including the
two different media are given in Figure 4. For the random
medium shown in Figure 3a the fluid flow occurs via a
cellular pattern which begins locally and with increasing
R fills in the complete fluid layer, cf. Figure 4a.

This is also obvious from the Nusselt data which show
a rounded transition, cf. Figure 4c. By contrast, the exper-
iment constructed with a periodic stacking of bars with a
rather small pore scale, cf. Figure 3b, shows an instrumen-
tally sharp transition to convection, cf. Figure 4b,d. Thus,
for the rather small pore scales of both media, δ < d, the
rounding in Nu in Figure 4c is clearly associated with the
random spatial variations in the porous structure.

This is seen as well in the experiments using PMC.
Here, we contrast in Figures 5, 6 data for a nominally ran-
dom packing of spheres, a hexagonal packing of spheres
in a rectangular container, and a hexagonal packing of
spheres in a hexagonal container. In this sequence of dif-
ferent containers, we move from random to increasingly
ordered structures. In the disordered packing, the flow
starts in regions where there are defects in the packing
(the source of the disorder), and with increasing ∆T con-
vection fills the cell, similarly to the first case above. In
the ordered packings, well defined convection rolls form
instead, cf. Figure 6. In the case of the rectangular con-
tainer, there is another interesting feature associated with
local variations in Rayleigh number.

Note that packing spheres with a hexagonal pattern in
a rectangular container means that along one pair of walls
there will be a particularly large porosity/permeability
and hence locally large Rayleigh number. In fact, convec-
tion does first start in this highest-γ region, although the
small rolls which start there remain highly localized and
do not seem to strongly affect the flow at higher values of
the Rayleigh number.

3 Taylor-Couette flow with random spatial
variations

A somewhat simpler example of a system with random
spatial variations is a conventional Taylor–Couette (TCF)
apparatus as shown in Figure 7 [7], for which the gap size
is variable as indicated in Figure 8. In our experiment
[28] the inner cylinder has been roughened by machin-
ing axisymmetric grooves along the length of the cylinder.
The location of the grooves is random by design, and the
spectrum of wavelengths, Figure 8, is roughly flat up to
the wavenumber corresponding to the axial width of the
grooves. The inner surface of the outer cylinder is smooth,
so that the grooves in the inner cylinder uniquely impart
random axial variation in the Taylor number.
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(a) (b)

Fig. 3. Specially constructed porous media.

(a) (b)

(c) (d)

Fig. 4. In (a) a typical pattern observed for random medium is shown, cf. Figure 3a, and in (b) a typical pattern observed for
a rectangular grid porous medium, cf. Figure 3b. In (c) and (d) the respective data for the heat transfer (Nusselt number Nu)
are shown as function of the reduced Rayleigh-number R = Ra/Rac.
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Fig. 5. Vertically averaged, vertical velocity for a circular
cell with disordered packing of spheres. In (a) for a vanishing
temperature difference between the top and bottom bound-
ary, ∆T = 0.0. From part (b) to (f) the velocity pattern is
shown for different values of the reduced temperature differ-
ence, ε = (∆T − ∆Tc)/∆Tc. (b) ε = −0.5, (c) ε = 1.0, (d)
ε = 3.0, (e) ε = 5.0 and (f) ε = 3.0, but after first decreasing
∆T to 0 and then raising it back to 3.0.

Unlike earlier experiments on fluid flow in contain-
ers with boundary variations, such as ramps [29,30] or
spatially periodic variations [16,32], the experiment we
consider here is similar in character to PMC in that the
variations are random and have a broad spectrum with a
significant power for wavelengths less than d.

In order to characterize the effect of spatial variability
in Reynolds number Re,

Re =
Ω1R1(R2 −R1)

ν
, (3)

it is important to measure the local velocity field through-
out the experiment. We do so by particle imaging ve-
locimetry (PIV). The fluid is seeded with a very low den-
sity of Kalariscope particles and then imaged with a short
depth-of-field using a small CCD camera mounted on a
stage which we transport vertically. The field of view is
restricted to the outer 1/4 of the fluid, and from com-
puter analysis of the particle tracks, we obtain the vertical

Fig. 6. Vertically averaged, vertical velocity for a packing
of the spheres with hexagonal symmetry. Top: Rectangular
container for different values of the reduced temperature (a)
ε = −0.5, (b) ε = 0.2 and (c) ε = 0.4. Bottom: For a hexago-
nal cell at different values of ε below and above critical.

velocity. For example, Figure 9 shows a representative ex-
ample of the tracks generated by particles, and Figure 10
shows an example of the vertical velocity field v of Taylor
vortices for a smooth inner cylinder.

The velocity measurements with the rough inner cylin-
der show clearly the effects of localization of the flow,
Figure 10. The initial flow clearly occurs in the regions
of locally largest Re which is intuitively obvious. With in-
creasing Ω1, the flow spreads to other regions of the fluid
and the localization becomes weaker, as indicated by the
decreasing width of the power spectrum for the Taylor
vortices.

For homogeneous systems, the bifurcation of the pat-
tern, here the Taylor vortices, is characterized either by
the Re-dependence of the local vertical velocity at a fixed
position or by the Re–dependence of the spatially (axi-
ally) averaged velocity 〈v2〉. For inhomogeneous systems,
such as for a rough inner cylinder, the functional depen-
dence of the vertical velocity v on Re will change with the
position of the measurement. Hence it is more appropri-
ate to characterize the bifurcation by the averaged velocity
〈v2〉, as done in Figure 11. Moreover the deviation between
the local and the global measurement is expected to be
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R1
R2

h

Ω

Fig. 7. The conventional Taylor-Couette apparatus is shown.
The gap between the two cylinders at R1 and R2 is filled with
water and the inner cylinder is rotated. Beyond a critical angu-
lar frequencyΩ1 the linear shear profile (Couette flow) becomes
unstable and periodic Taylor vortices occur (see e.g. [7]).

correlated with the localization of the pattern. Both
should decrease with increasing values with increasing am-
plitude of the velocity of the vortices.

Since no ab-initio calculation for the Taylor system
with a rough inner cylinder is yet available, it is inter-
esting to ask which generic model best fits the measure-
ments. Inspection of the power spectrum of the rough-
ness, cf. Figure 8, tells us that the wave number at the
first peak, qn1, is close to the critical wave number qc
of the Taylor vortices. Hence, one expects a resonance
1 : 1 = qc/qn1, which can be described by an appropri-
ate Ginzburg–Landau-equation with an additive constant
[31,34]. In the power spectrum in Figure 8 there are also
strong contributions at larger wave numbers. Therefore,
there could also be higher order resonance effects, such as
1 : 2, 1 : 3 and 1 : 4 resonances. The modification of a
supercritical bifurcation according to such resonances has
been described by Coullet [17]. For a 1 : 2 and a 1 : 4 reso-
nance the former supercritical bifurcation is still sharp. A
1 : 2–resonance just shifts the threshold to smaller values
and the 1 : 4 reduces the prefactor β in the bifurcation
relation v2 = βε. Assuming that the rounded bifurcation
in Figure 11 is mainly due to these resonant contributions
of the power spectrum of the roughness, the part of the
spectrum contributing to the 1 : 1 and the 1 : 3 resonance
can primarily induce the rounding. Both resonances have
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Fig. 8. The top part shows half of the rough inner cylinder of
the TCF apparatus. The figure at bottom gives the power spec-
trum related to the roughness of the inner cylinder, whereby
the dashed line corresponds to the wavenumber of the Taylor
vortices without the roughness.

been considered separately for single periodic forcing in
reference [17].

Accordingly, the model describing both resonances si-
multaneously reads as

∂tA = εA+ bA2 − cA3 + h, (4)

if any spatial dependence is neglected. The solid line in
Figure 11 correspond to a least squares fit to the stable
steady solutions of this model. The quality of the fit is fair.
Even a nearly exponential law in an intermediate range
is fitted by the algebraic rule for this simple imperfect
bifurcation.

We contrast the data for the rough inner cylinder with
data for a nearly ideal experiment, cf. Figure 11. Within
experimental resolution we see a sharp bifurcation (the
Eckmann vortices visible in Figure 10 represent a weak
imperfection in this case). Moreover, the data for 〈v2〉 are
well fitted by a linear function of Re.

The model of equation (4) completely neglects the in-
fluence of wave numbers in the power spectrum, aside from
1 : 1 and 1 : 3 resonances. However, the other contribu-
tions are crucial to explain localization of velocity field as
shown in Figure 10. Localization effects are only expected
for a perturbation with a broad spectrum, never for single
periodic resonant forcing.
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Fig. 9. Particle tracks in Taylor Couette Flow.
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Fig. 10. Vertical velocity field of Taylor vortices with a smooth
inner cylinder (top) and for the rough inner cylinder as shown
in Figure 8 (bottom).
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〈
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) is shown as function of the Reynolds number Re =

Ω1R1(R2 − R1)/ν, dots, and the solid line is a fit with the
model given in equation (4).

Usually, rounding of the bifurcation as shown in
Figure 11 is interpreted as an imperfect bifurcation as it is
met for instance close to a 1 : 1 resonance. However, it has
been shown by a numerical study of the Swift–Hohenberg
equation with a random perturbation of the control pa-
rameter, that one can have both, such a rounded bifur-
cation and a sharp threshold for the onset of the pattern
simultaneously [14]. This and other theoretical aspects of
random perturbations are discussed in the next Section 4.

4 Simple models for inhomogeneities
in pattern formation

Thermal convection has been theoretically investigated
for inhomogeneous conditions. For spatial variations at
the container boundaries [30–32,34–36] (including mod-
ulations in a rotating cylindrical annulus [33]), for a
weakly heterogeneous porous medium [37] and for ho-
mogeneous porous media with boundary imperfections
[38–41]. For these examples, well established equations of
motion are available and approximately solved, whereby
contributions in the disorder spectrum are emphasized,
which are in 1 : 1 resonance with the spatial periodicity
of the pattern. This type of resonance induces an imper-
fect bifurcation and hence leads to a rounded bifurcation
shape. However, the broad wave number spectrum of het-
erogeneities is crucial for a number of disorder effects. An
example is localization of the pattern, which is absent for
single periodic forcing. Localization of a pattern has been
shown for the Swift–Hohenberg equation with a random
contribution to the control parameter [14].

The Swift–Hohenberg equation is one of the simplest
models describing a bifurcation from a homogeneous ini-
tial state to a stationary and spatially periodic pattern
[4,42]. For this model, the bifurcation is sharp but
rounded. That is, the no-flow state exists and is stable
up to a critical value of the control parameter, and above
the bifurcation, the dependent field shows upward curva-
ture. Here we show by a perturbational calculation that
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this rounding is partly due to nonresonant contributions
in the spatially varying control parameter. In a further
section we emphasize that spatially varying drifts induce
a time dependence of spatially periodic patterns.

4.1 Swift–Hohenberg with spatially varying control
parameter

In this section a generalized Swift–Hohenberg model is
studied, which has a broken spatial translational symme-
try. This system,

∂tu=
[
ε+M1(x)−(q2

0 +∂2
x)2
]
u−u3+M3(x), (5)

was discussed first in reference [14]. ε is the control pa-
rameter that is similar to the reduced Taylor or Rayleigh
number in real systems, and q0 is the critical wave number
at threshold of the unperturbed case, Mi = 0.

Various perturbations affect the pattern selection in
this system in different ways. A spatially and single peri-
odic perturbationM1(x), with a modulation wave number
k1 of the order of the wave number of the pattern, q0, leads
to commensurate/incommensurate transitions in one spa-
tial dimension [17,43] and to a new pattern in two spa-
tial dimensions [20,21]. A random function M1(x) leads
to localization of the pattern and to a rounding of the bi-
furcation, which is still sharp [14]. An additive function
M3(x) breaks the ±u-symmetry in equation (5). In two
spatial dimensions this broken symmetry forces hexago-
nal patterns. Thermal fluctuations are a function of space
and time and occur also additively, such as M3(x, t).

Numerical calculations of equation (5) have shown for
M3(x) = 0 that the bifurcation from the basic state, u ≡ 0,
is still sharp, but shifted to lower values [14]. In addition
the Nusselt number

N(ε) =
1

L

∫ L

0

dxu(x)2 (6)

as function of the control parameter, ε, has a rounded
shape similar to an imperfect bifurcation [31].

If we assume a small modulation, M1(x) = ηM̄1(x) ∝
O(1) (η � 1) then the threshold shift as well as the
rounding of the bifurcation can be calculated by a per-
turbational calculation as indicated in the following two
sections.

4.1.1 Threshold shift - M3(x) = 0

We expand the control parameter as well as the solution of
the linear part of equation (5) in powers of the modulation
strength η:

εc = ε(0)
c + ηε(1)

c + η2ε(2)
c + . . . , (7)

u(x) = u0(x) + ηu1(x) + η2u2(x) + . . . (8)

With the definition of the linear operator,

L0 = ε(0)
c − (q2

0 + ∂2
x)2, (9)

the following hierarchy of equations is obtained from equa-
tion (5):

η0 : L0u0 = 0, (10)

η1 : L0u1 = −[M̄1(x) + ε(1)
c ]u0, (11)

η2 : L0u2 = −[M̄1(x) + ε(1)
c ]u1 − ε

(2)
c u0. (12)

From these equations, threshold shifts can be calculated at

the respective orders ε
(1)
c , ε

(2)
c . The final expressions are in

general lengthy and depend on the choice of the stochastic
properties of M̄1(x). However, the essential features can
be demonstrated with a periodic perturbation,

M̄1(x) = 2Ḡ cos(kx). (13)

If we start with an unperturbed solution,

u0(x) = A0 cos(q1x), (14)

then we obtain ε
(0)
c = (q2

0−q
2
1)2 from the marginal stability

condition equation (10).

No resonance k 6= 2q1

When the external modulation is not in resonance with
the pattern, then the product M̄1(x)u0 includes no con-
tribution proportional to the unperturbed solution, u0. In
this case the first order equation (11) can be solved for

ε
(1)
c = 0:

u1(x) = −

(
Ḡ cos((q1 + k)x)

ε
(0)
c − (q2

0 − (q1 + k)2)2

+
Ḡ cos((q1 − k)x)

ε
(0)
c − (q2

0 − (q1 − k)2)2

)
A0. (15)

In equation (12), the product M̄1(x)u1(x) includes a con-
tribution proportional to u0(x) and u0(x) belongs to the
kernel of the operator L0. At the right hand side in equa-
tion (12) the part ∝ u0(x) vanishes only when

ε(2)
c =

Ḡ2

ε
(0)
c − (q2

0 − (q1 + k)2)2
+

Ḡ2

ε
(0)
c − (q2

0 − (q1 − k)2)2
,

(16)

which gives the threshold shift in second order. This ex-
pression simplifies to

ε(2)
c = −

Ḡ2

k2

( 1

(2q0 + k)2
+

1

(2q0 − k)2

)
(17)

when the wavelength is adjusted at the minimum of the
unperturbed threshold, q1 = q0. For small wave numbers
k� q0, this expression becomes even more compact:

ε(2)
c = −

2Ḡ2

4 q2
0 k

2
· (18)

Hence a spatially periodic modulation (13) reduces the
threshold for the bifurcation, whereby a divergence occurs
in equation (17) both for k → 0 and k → 2q1. The latter
resonant case is now considered separately.
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Resonance k = 2q1

Here, the product M̄1(x)u0 on the right hand side of equa-
tion (11) includes a contribution proportional to u0 and

equation (11) can be fulfilled only when ε
(1)
c = −Ḡ. For

this resonant case, the solution u1(x) includes only the
first contribution of the expression in equation (15), and
the whole expression for the threshold εc is given by

ε = ε(0)
c − ηḠ− η

2 Ḡ2

ε
(0)
c − (q2

0 − 9q2
1)2

+ . . . (19)

This short calculation shows that the threshold is shifted
linearly by contributions to M̄1(x) which are resonant to
the pattern k = 2q1 and that the shift is quadratic other-
wise.

4.1.2 Rounding of the bifurcation – M3(x) = 0

For the homogeneous case, M1 = 0, the Nusselt–number
N in equation (6) increases linearly with ε beyond thresh-
old. Here we address the question of how N(ε) is modified
by a spatially periodic and nonresonant modulation as
given in equation (13). The technical steps become sim-
pler for a long wave length modulation k � q0. In this
limit, the Swift–Hohenberg equation reduces further to
an amplitude equation (see Appendix B of Ref. [4]) with
a spatially periodic coefficient,

∂tA =
[
ε+M1(x) + 4q2

0∂
2
x − 3 | A |2

]
A, (20)

and with u(x, t) = A(x, t) exp(iq0x)+A∗(x, t) exp(−iq0x).
Repeating the steps of the perturbation expansion for the
Swift–Hohenberg equation in Section 4.1.1, one finds again
the threshold shift for a long wavelength modulation as
given in equation (18). Equation (20) has for M1 = 0
a constant solution A2 = ε/3. We assume again small
modulation amplitudes M1(x) ∝ η and we calculate the
corrections to this constant nonlinear solutions:

A =
1
√

3

[
A0 + ηA1 + η2A2 . . .

]
. (21)

With this ansatz we expand equation (20) with respect to
powers of the small parameter η and we obtain:

η0 : (ε+4q2
1∂

2
x)A0− | A0 |

2 A0 = 0, (22)

η1 : (ε+4q2
1∂

2
x)A1 −A

2
0 (2A1 +A∗1) = −2Ḡ cos(kx)A0,

(23)

η2 : (ε+4q2
1∂

2
x)A2 −A

2
0 (2A2 +A∗2) = −2Ḡ cos(kx)A1

+A0

(
A2

1+2 | A1 |
2
)
.

(24)

The solution of equation (23) is

A1 =
2ḠA0

4q2
1k

2 + 2ε
cos(kx) = B1 cos(kx), (25)

which vanishes in the limit of large values of ε such as
1/
√
ε. The spatially independent contribution to A2 is

Ã2 =
A0

ε

Ḡ2(4q2
1k

2 − ε)

(4q2
1k

2 + 2ε)2
· (26)

These solutions Ai allow an expansion of Nusselt number
up to the leading orders, and one has

N = 2 | A |2=
2

3

[
A2

0 + η2(B2
1/2 +A0Ã2) + . . .

]
=

2

3

[
ε+ 2η2 Ḡ2 q2

1k
2

(2q2
1k

2 + ε)2
. . .
]
. (27)

The Nusselt number is already finite at the threshold for
the unperturbed SH-equation, ε = 0 and at threshold of
the perturbed problem, ε ∝ −η2, ε in the denominator
can be neglected and N vanishes precisely at the shifted
threshold given in equation (18). Far beyond threshold
the Nusselt number approaches the linear ε–dependence
of the unperturbed situation. The initial slope of N ,

∂N

∂ε
(ε = εc) =

2

3

[
1− 8η2 Ḡ2

16q4
1k

4
. . .
]
, (28)

is reduced by the external perturbation. This reduction of
the initial slope and the vanishing correction for the Nus-
selt number at larger values of ε indicate the rounding of
N(ε), as can easily be seen by plotting the expression (27)
as a function of ε. Calculations for a perturbation M1(x)
with a broad power spectrum lead to qualitatively similar
results. This ε–dependent slope of N(ε) is an analytical
explanation of the numerically obtained rounding of the
sharp bifurcation in reference [14]. Hence, not only 1 : 1
resonance leads to rounding of the bifurcation. The effects
on the Nusselt-number discussed here are proportional to
A2. Hence the corrections are ∝ η close to 1 : 2–resonance
and ∝ η2 out of resonance. Whether the resonant or non-
resonant corrections dominate, depends on the wave num-
ber distribution of disorder and on the value of the control
parameter ε. This issue will be discussed in more detail
elsewhere.

4.2 Effects of spatially varying drifts

It has been shown for a Rayleigh–Bénard experiment in
reference [32] that a simultaneous modulation of the top
and bottom container boundary leads to drifting convec-
tion rolls when the modulation wavelength is the same at
the top and bottom and when both modulations are phase
shifted relative to each other. This situation has been gen-
eralized to modulations of the top and bottom boundary
with different wave lengths [21,44], and a so–called Hopf–
bifurcation by frustrated drifts has been predicted for such
an inhomogeneous situation.

The simplest pattern forming model describing the ef-
fects induced by frustrated drifts, is the Swift-Hohenberg
equation with a spatially varying drift coefficient M2(x):

∂tu =
[
ε− (q2

0 + ∂2
x)2 +M2(x)∂x

]
u− u3. (GSH)

(29)
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A constant drift, M2(x)∂x, with M2(x) = const ., can be
removed by transforming into the comoving coordinate
frame x → x + Mt. For a spatially periodic modulation,
M2(x), with vanishing spatial mean value,

∫
dxM2(x) =

0, the local drifts are frustrated. Above some critical am-
plitude of M2(x), the bifurcation from the trivial state,
u ≡ 0, is oscillatory and one finds the so–called Hopf bifur-
cation by frustrated drifts [45,46]. If, for instance, M2(x)
is the sum of two harmonic functions, then even a fourfold
degenerated Hopf–bifurcation might occur [46].

Next, we assume that M2(x) is harmonic and we con-
sider the following two explicit forms:

M2(x) = 2G2 cos(2kx+ ϕ), (30)

M2(x) = 2G2 cos(4k̂x+ ϕ) + 2G3 cos(6k̂x+ ϕ2). (31)

The first expression is periodic with respect translations
x→ x+ π/k, and the second one, given in equation (31),

is periodic with respect to x → x + π/2k̂. In order to

keep the results comparable later on, we choose k = 2k̂.
Stochastic drifts as well as a stochastic contribution in the
control parameter ε are discussed elsewhere in more detail
[14].

Because of the periodicity of M2(x), the solutions of
the linear part of equation (29) can be divided into two
classes. One class of solutions is symmetric with respect

to a translation by λ =
π

k
, us(x) = us(x + λ), and the

other one is antisymmetric, ua(x) = −ua(x + λ). us(x)
corresponds to solutions which are harmonic and ua(x)
which are sub-harmonic with respect to translations x→
x+ λ.

Part of the main effects can be shown again in the
limit of long–wavelength modulations in equation (30)
(k � q0). In this limit equation (29) can be reduced fur-
ther to an amplitude equation with a spatially varying
frequency,

∂tA = [ε+ iq0M2(x) + 4q2
0∂

2
x]A− 3 | A |2 A, (32)

(i is the imaginary unit). For this derivation we em-
ployed the multiple scale ansatz u = A exp(iq0x) + cc,
where A(x, t) and M(x)(≈ O(ε)) are slowly varying on
the length scale 2π/q0 (k ≈ O(ε1/2q0)). Solutions to equa-
tion (32) have the same behavior as the starting equa-
tion (29), apart from minor differences. Similar general-
ized GL-equations are expected for systems with compara-
ble broken symmetries. An example is discussed below for
Rayleigh-Bénard convection in Section 4.3. According to
the relation between equation (29) and the rather general
equation (32) the described properties are generic and not
specific to the GSH-equation (29) with frustrated drifts.
For instance, equations with random frequencies occur ex-
tensively in investigations on coupled oscillator systems
[23,22].

The first question to be investigated is the bifurcation
from the trivial state u ≡ A ≡ 0. We do this again with the
assumption of small modulation amplitudes M2(x) ∝ η
and expand the field A(x), the control parameter ε and

the frequency ω with respect to powers of η:

εc = ε(0)
c + ηε(1)

c + η2ε(2)
c + . . . , (33)

ωc = ω(0)
c + ηω(1)

c + η2ω(2)
c + . . . , (34)

A(x) = A0(x) + ηA1(x) + η2A2(x) + . . . (35)

With the definition,

L0 = ε(0)
c + 4q2

0∂
2
x, (36)

this leads to the hierarchy of equations:

η0 : L0A0 = 0, (37)

η1 : L0A1 = −[iM̄2(x)+ε(1)
c +iω(1)

c ]A0, (38)

η2 : L0A2 = −[iM̄2(x)+ε(1)
c +iω(1)

c ]A1−[ε(2)
c +iω(2)

c ]A0.
(39)

In the following we only discuss explicitly the case of a sin-
gle periodic modulation (30). There are harmonic (sym-
metric) and subharmonic (antisymmetric) solutions with
respect to the modulation M2(x). Accordingly, we start
in the perturbation hierarchy either with constant (har-
monic) solution, A0 = const ., or with a subharmonic one,
A0 ∝ cos(kx).

Harmonic solutions

In this case, we start the expansion with A0 = constant

and therefore ε
(0)
c = 0 follows from the marginal stabil-

ity condition. If the solution B1(x) is periodic, then the
integral of (38) over a whole period 2π/k vanishes. From

this solubility condition, we obtain ε
(1)
c = ω

(1)
c = 0 and

for M̄2(x) = 2Ḡ2 cos(2kx) (with G2 = ηḠ2),

A1 =
iq0

16q2
0k

2
M̄2(x)A0. (40)

Also, the integral of (39) over a whole period 2π/k van-
ishes which leads to the threshold condition

εh,c(G2, k) =
G2

2

8k2
+O(G4

2), ωc = 0. (41)

ωc = 0 means that there is a stationary bifurcation from
A ≡ 0 for the branch of harmonic solutions. The modula-
tion iM2(x) increases the threshold, whereas modulations
of the control parameter, ε+ ξ(x), reduce the threshold as
shown in the previous Section 4.1.1.

Subharmonic solutions

To describe the subharmonic solutions, the expansion (35)
has to be started with

A0 = F1 exp[ikx] + F−1 exp[−ikx]. (42)

The marginal stability condition, L0A0 = 0, gives with

ε
(0)
c = 4q2

0k
2 a higher threshold than for the harmonic

case above. One has now for the subharmonic solu-
tions L0 exp[±ikx] = 0, and therefore the coefficients of
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exp[±ikx] on the rhs of equation (38) have to vanish. This
requires

ε(1)
c = 0, ω(1)

c = ±Ḡ2 q0. (43)

The solution at next order is

A1(x) =
iḠ2

32q0k2

[
F1e

3ikx + F−1e
−3ikx

]
. (44)

On the rhs of equation (39) the coefficients of exp[±ikx]
have to vanish too, which allows the determination of

ε
(2)
c = Ḡ2

2/32k2. The threshold and the Hopf-frequency
up to leading order are

εs,c(G2, k) = 4q2
0k

2 +
G2

2

32k2
+O(G4

2), (45)

ωs,c(G2, k) = q0G2 +O(G3
2). (46)

At this subharmonic branch, the imaginary part differs
from zero for every finite modulation amplitude G2. How-
ever, the Hopf-bifurcation of the subharmonic branch is
only relevant when its threshold drops below the thresh-
old of the harmonic branch, cf. equation (41).

Codimension-2 bifurcation

Comparing the thresholds for the harmonic branch, equa-
tion (41), and the subharmonic branch, equation (45), it
is easy to see that the εh,c grows faster with G2 than εs,c
and crosses εs,c at some critical value G2CTP . Then the
subharmonic Hopf-bifurcation has the lower threshold. At
the critical value G2CTP ,

G2CTP = q0k
2

√
128

3
,

ωCTP = q2
0k

2

√
128

3
, (47)

where the threshold of the harmonic and the subhar-
monic branch coincide, i.e., one has a codimension-2
point (CTP). Both instabilities compete at this point
and the nonlinear interaction between both modes de-
termines which mode survives. For increasing values of
G2, the threshold of the subharmonic Hopf-bifurcation
becomes lower than that of the stationary harmonic so-
lutions, which is a surprising result described earlier in a
short note [45].

To point out that a periodic modulation M2(x) has a
different consequence for a homogeneous bifurcation than
for a periodic bifurcation, we discuss for completeness the
generalized real Ginzburg-Landau equation:

∂tu =
[
ε+ ∂2

x +M2(x)∂x
]
u− u3. (GGL) (48)

With M2(x) = 0, this equation has spatially homogeneous
solutions. For spatially harmonic modulation, M2(x), the
drifts in this equation are frustrated as well. However, in
equation (48) the frustration does not lead to a Hopf bifur-
cation. Hence the interplay of a spatially harmonic drift,

space

a)

b)

tim
e

tim
e

Fig. 12. The solution u(x, t) of the GSH-equation (29) is
shown above a Hopf bifurcation as function of space and time
for a single periodic drift. In (b) the solution is given just above
threshold at ε = 0.024, whereas the threshold value for the
Hopf bifurcation is at ε = 0.0224 . . . In (a) the solution is
shown at ε = 0.340, just below the secondary bifurcation into
the stationary solution. The modulation amplitude was fixed
at G2 = 0.03, and the modulation wave number at k = q0/16.
M2(x) is plotted at the bottom.

M2(x), and a periodic solution, such as in equation (29),
is crucial for the phenomenon Hopf bifurcation by frus-
trated drifts. This phenomenon is also relevant for cou-
pled oscillator systems with randomly varying frequencies
[4,23,47,48], but it will only occur when the phase approx-
imation, usually employed for coupled oscillator systems,
is dropped.

If the wave number of M2(x) is of the order of q0,
the behavior of the GSH-equation (29) and the GGL-
equation (48) is changed in a similar manner as for a
modulation, M1(x), of the control parameter ε – only the
threshold is shifted. If the modulation wave-number k is
much smaller than q0, say k < q0/5, then a periodically
modulated part of the control parameter M1(x) and a pe-
riodic drift M2(x) lead to qualitatively different behavior
of the GSH-equation (29) and periodic patterns in gen-
eral.

We next describe the typical spatiotemporal behav-
ior beyond a Hopf bifurcation by frustrated drifts. In
Figure 12a spatially modulated standing waves are shown,
which occur immediately beyond the bifurcation for a sin-
gle periodic modulation M2(x) = 2G2 cos(2kx) with pa-
rameters ε = 0.05, G2 = 0.05, and k = q0/16. With in-
creasing ε, the temporal behavior of the solution at each
space point becomes more and more anharmonic as shown
in Figure 12b. This anharmonicity in the time dependence
takes place especially near the secondary bifurcation back
to the stationary solution which is stable at larger values
of ε.
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space

tim
e

Fig. 13. The solution u(x, t) of the GSH-equation (29) is
shown above a Hopf bifurcation as function of space and time
and for a doubly periodic drift M2(x) = 2G1 cos[2kx+ π/2] +
2G2 cos[3kx+ π/4]. M2(x) is plotted at the bottom.

A doubly periodic drift term M2(x) = 2G2 cos(2kx+
π/2)+2G3 cos(3kx+π/4) leads, instead of standing waves,
to aperiodic and chaotic motion as indicated in Figure 13
for the parameters: G2 = 0.045, G3 = 0.046, k = q0/16
and ε = 0.068). More details are given in reference [46].

Essential for the occurrence of the Hopf bifurcation by
frustrated drifts is the interplay between the periodic in-
stability and the spatially periodic drift (spatially periodic
frequency), whereas the wavelength of the periodic drift is
much larger than that of the instability (k � q0). The sim-
ilarities of equation (32) with model equations for coupled
oscillator families [47,4], especially for a random function
M2(x), is obvious and will be discussed elsewhere.

4.3 Modulated Rayleigh-Bénard convection

The phenomenon of Hopf bifurcation by frustrated
drifts as discussed for models in Section 4.2 can
be found in Rayleigh-Bénard convection too. Ac-
cording to detailed calculations described in refer-
ence [44] this can occur for instance for a wavy
top boundary and a simultaneous temperature mod-
ulation at the bottom boundary as indicated in
Figure 14. The undulated top boundary maybe located
at z = d(1 + H0), with H0 = F0 cos(k0x) and the
temperature maybe modulated at the bottom boundary
(z = 0), as Tb = T̄b+H2(x)(T̄b−Tu)/Rfc , with the dimen-
sionless modulation function H2(x) = F2 cos(k2x + ϕ2)
and Rfc = 27π4/4. These modulations at the top and bot-
tom boundary then lead to an oscillatory bifurcation from
a primary state. Such a Hopf–bifurcation by frustrated
drifts takes place for various combinations of the modu-
lation amplitudes Fi and the modulation wave numbers
ki [44,49]. An example is k2/k0 = 2, ϕ2 = ±π and the
amplitudes Fi beyond a critical threshold [44].

For such an experimental design and for small modu-
lation amplitudes it is also possible to derive an equation
for the envelope A0(x, t) of thermal convection

u(x, z, t) =
[
A0e

iqcx +A∗0e
−iqcx

]
U0(z) (49)

by using a well established perturbation scheme
[4,50,51]. Herein the vector u contains the temperature

T

Fig. 14. An experimental design for modulated Rayleigh-
Bénard Convection with a combination of an upper plate of
corrugated form and a temperature modulation at the lower
plate. The ratio of the wave numbers of the periodic undula-
tion of the top plate (k0) and the temperature modulation at
the bottom plate (k2) is k0: k2 = 2 : 3. The gray scale in the
fluid layer indicates the temperature field of the primary flow,
and along the solid lines the velocity potential of the primary
flow is constant [44]. The curve below the cell indicates the
temperature variation at the bottom plate.

field and the velocity potential as components and qc is the
critical wave number at onset of convection. For the expan-
sion, one uses as a small parameter ε = (∆T −∆Tc)/∆Tc,
which measures the distance from the critical tempera-
ture difference at convective onset in the unmodulated
case. Assuming additionally small modulation wave num-
bers, (k/qc) ∝ ε1/2 and Hi(x) ∝ ε1/2, one can derive for
this modulated convection cell, as shown in Figure 14, a
generalized amplitude equation of the form [52],

τ0∂tA0 =
[
ε−

7

3
H2

0 + 3H0 +
(

1 +
5

3
H0

)H2

Rc

+ i

√
2

π

(271

576
∂xH0 −

5

192Rc
∂xH2

)]
A0

+
[
i
2
√

2

3π

(
H0−

1

Rc
H2

)
∂x+ξ2

0∂
2
x−α | A0 |

2
]
A0,

(50)

with ξ2
0 = α = 8/3π2 and τ0 = 9π2/2Rc. Here the coeffi-

cients in the equation are calculated for stress–free bound-
ary conditions, but they have been determined for realistic
boundary conditions too [46].

An analysis of the linear part of equation (50), as well
as a full analysis of the Navier-Stokes equations [44] shows
that by raising the modulation amplitudes in Rayleigh-
Bénard convection, the onset of a spatially periodic con-
vection pattern can be changed via Hopf bifurcation by
frustrated drifts from a stationary to an temporarily os-
cillating one. There is good agreement between results
obtained by starting from the full equations and the am-
plitude equation (50) [44,49]. Similar as for the Swift-
Hohenberg equation in (29), immediately above the Hopf
bifurcation by frustrated drifts, standing waves instead
of traveling waves are the preferred and stable solutions.
With increasing values of the control parameter, the solu-
tions of (50) become at first aperiodic and then spatiotem-
poral complex, before a regime of very slowly traveling
waves is reached at large values of ε [49].

Traveling waves are known in binary fluid mixtures
and in electroconvection. In both systems traveling waves
bifurcate subcritically (discontinuous) and perturbation
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methods cannot be applied for the determination of the
nonlinear solutions behavior. Since the nonlinear coeffi-
cient, α, in equation (50) is left unchanged by small mod-
ulations at boundaries, the Hopf bifurcation by frustrated
drifts occurring in modulated thermal convection is su-
percritical as well. This justifies the application of pertur-
bation methods for the characterization of the nonlinear
solutions.

4.4 Conclusion

We have shown that heterogeneities reduce the symmetry
and thereby induce a number of interesting phenomena
in pattern forming systems, such as localization of wave
pattern, cellular patterns, semi-log scaling and dynamical
states via a Hopf-bifurcation by frustrated drifts.

So far examples have been studied where hetero-
geneities modify the bifurcation from a trivial basic state
to a spatially periodic pattern. Another interesting ques-
tion is how heterogeneities modify the bifurcation to trav-
eling waves or to spatio-temporal chaotic patterns, such
as Spiral–Defect–Chaos in thermal convection [53,54]. In
the latter system, the reduced symmetry may lead for in-
stance to new frozen patterns and surprising domain–wall
patterns.

The Hopf bifurcation by frustrated drifts shows that
broken symmetries related to inhomogeneities also allow
a controlled modification of the bifurcation type, for ex-
ample, a change from a stationary bifurcation to an os-
cillatory bifurcation or even to spatio–temporal complex
behavior.

An additional feature, which is also seen in porous me-
dia convection and in Taylor vortices flow: the presence of
spatial randomness suppresses the higher order instabili-
ties, i.e. wavy Taylor–Vortex–Flow or in the case of PMC,
cross rolls or similar 3D structures. These and a number
of similar questions not touched so far are addressed in
future works.

Part of this work was done during fruitful collaborations with
Lawrence Howle, Rainer Schmitz, Mark Shattuk and Mark
Steen. The work of RPB and BP was supported by the US
NSF under grant number CTS-9610248 and the work of WZ
was supported by the DFG.
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